Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples

Abstract

By identifying the sequence of retro- and lentiviral integration sites in peripheral blood leukocytes, the clonal composition and fate of genetically modified hematopoietic progenitor and stem cells could be mapped in vitro and in vivo.

Previously available methods have been limited to the analysis of mono- or oligoclonal integration sites present in high copy numbers. Here, we perform characterization of multiple rare retroviral and lentiviral integration sites in highly complex DNA samples. The reliability of this method results from nontarget DNA removal via magnetic extension primer tag selection (EPTS) preceding solid-phase ligation-mediated PCR. EPTS/LM-PCR allowed the simultaneous direct genomic sequencing of multiple proviral LTR-flanking sequences of retro- and lentiviral vectors even if only 1 per 100 to 1000 cells contained the provirus.

A primer walking “around” the integration locus demonstrated the adaptability of EPTS/LM-PCR to study unknown flanking DNA regions unrelated to proviruses.

The technique is fast, inexpensive, and sensitive in minimal samples. It enables studies of retro- and lentiviral integration, viral vector tracking in gene therapy, insertional mutagenesis, transgene integration, and direct genomic sequencing that until now have been difficult or impossible to perform.

Read the full publication here.

Related Publications

Discover more publications from the GeneWerk team

Systematic comparative study of computational methods for…

Abstract High-throughput sequencing technologies have exposed the possibilities for the in-depth evaluation of T-cell...
View

Real-Time Definition of Non-Randomness in the Distribution…

Abstract Features such as mutations or structural characteristics can be non-randomly or non-uniformly distributed...
View

Preclinical evaluation of efficacy and safety of…

Abstract A previously published clinical trial demonstrated the benefit of autologous CD34(+) cells transduced...
View

Polyclonal long-term repopulating stem cell clones in…

Abstract Hematopoietic bone marrow stem cells generate differentiated blood cells and, when transplanted, may...
View

Want to get in touch?

Click the button below if you want to find out more about the services
we offer or discuss your next project.

Contact us
I agree to the Privacy Policy and Terms of Service.